Maximizing Submodular Functions under Matroid Constraints by Multi-objective Evolutionary Algorithms
نویسندگان
چکیده
Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a multi-objective evolutionary algorithm called GSEMO until it has obtained a good approximation for submodular functions. For the case of monotone submodular functions and uniform cardinality constraints we show that GSEMO achieves a (1 − 1/e)-approximation in expected time O(n (logn + k)), where k is the value of the given constraint. For the case of non-monotone submodular functions with k matroid intersection constraints, we show that GSEMO achieves a 1/(k + 2 + 1/k + ε)-approximation in expected time O(n log(n)/ε).
منابع مشابه
Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms
Many combinatorial optimization problems have underlying goal functions that are submodular. The classical goal is to find a good solution for a given submodular function f under a given set of constraints. In this paper, we investigate the runtime of a simple single objective evolutionary algorithm called (1 + 1) EA and a multiobjective evolutionary algorithm called GSEMO until they have obtai...
متن کاملMaximizing Non-monotone/Non-submodular Functions by Multi-objective Evolutionary Algorithms
Evolutionary algorithms (EAs) are a kind of nature-inspired general-purpose optimization algorithm, and have shown empirically good performance in solving various real-word optimization problems. However, due to the highly randomized and complex behavior, the theoretical analysis of EAs is difficult and is an ongoing challenge, which has attracted a lot of research attentions. During the last t...
متن کاملMaximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMaximizing non-monotone submodular set functions subject to different constraints: Combined algorithms
We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-kna...
متن کاملMaximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کامل